Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
J Comp Neurol ; 532(4): e25611, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38625816

RESUMO

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Assuntos
Encéfalo , Columbidae , Animais , Columbidae/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado , Neostriado/fisiologia , Mamíferos
2.
Laterality ; : 1-37, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669348

RESUMO

Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.

3.
Res Sq ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496470

RESUMO

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm. Recently, advances in functional magnetic resonance imaging (fMRI) in the avian brain have opened new windows to explore bird's brain function at the network level. Here, we developed a ground-breaking non-invasive functional MRI technique for awake, newly hatched chicks that record whole-brain BOLD signal changes throughout imprinting experiments. While the initial phases of memory acquisition imprinting behaviour have been unravelled, the long-term storage and retrieval components of imprinting memories are still unknown. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This platform opens up new avenues for exploring the broader landscape of learning and memory processes in neonatal vertebrates, contributing to a more comprehensive understanding of the intricate interplay between behaviour and brain networks.

4.
Neurosci Insights ; 19: 26331055241235918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425669

RESUMO

Over the past 30 years, behavioral, computational, and neuroscientific investigations have yielded fresh insights into how pigeons adapt to the diverse complexities of their visual world. A prime area of interest has been how pigeons categorize the innumerable individual stimuli they encounter. Most studies involve either photorealistic representations of actual objects thus affording the virtue of being naturalistic, or highly artificial stimuli thus affording the virtue of being experimentally manipulable. Together those studies have revealed the pigeon to be a prodigious classifier of both naturalistic and artificial visual stimuli. In each case, new computational models suggest that elementary associative learning lies at the root of the pigeon's category learning and generalization. In addition, ongoing computational and neuroscientific investigations suggest how naturalistic and artificial stimuli may be processed along the pigeon's visual pathway. Given the pigeon's availability and affordability, there are compelling reasons for this animal model to gain increasing prominence in contemporary neuroscientific research.

5.
Magn Reson Imaging ; 108: 104-110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336113

RESUMO

Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time. This currently is a problem, especially for detecting crossing fibers. We applied a state-of-the-art algorithm of Diffusion-weighted imaging called Constrained Spherical Deconvolution on diffusion data of three fixed brains of bottlenose dolphins using clinical human MRI parameters and were able to identify complex fiber patterns within a voxel. Our findings indicate that in order to maintain the structural integrity of the tissue, short-term post-mortem fixation is necessary. Furthermore, pre-processing steps are essential to remove the classical Diffusion-weighted imaging artifacts from images: however, the algorithm is still able to resolve fiber tracking in regions with various signal intensities. The described imaging technique reveals complex fiber patterns in cetacean brains that have been preserved in formalin for extended periods of time and thus opens a new window into our understanding of cetacean neuroanatomy.


Assuntos
Golfinhos , Animais , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Neurônios , Formaldeído
6.
Sci Rep ; 14(1): 1368, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228689

RESUMO

Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Inteligência
7.
Trends Cogn Sci ; 28(3): 197-209, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097447

RESUMO

Many cognitive neuroscientists believe that both a large brain and an isocortex are crucial for complex cognition. Yet corvids and parrots possess non-cortical brains of just 1-25 g, and these birds exhibit cognitive abilities comparable with those of great apes such as chimpanzees, which have brains of about 400 g. This opinion explores how this cognitive equivalence is possible. We propose four features that may be required for complex cognition: a large number of associative pallial neurons, a prefrontal cortex (PFC)-like area, a dense dopaminergic innervation of association areas, and dynamic neurophysiological fundaments for working memory. These four neural features have convergently evolved and may therefore represent 'hard to replace' mechanisms enabling complex cognition.


Assuntos
Aves , Cognição , Animais , Aves/fisiologia , Cognição/fisiologia , Neocórtex , Córtex Pré-Frontal
8.
NMR Biomed ; 37(1): e5034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681398

RESUMO

Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.


Assuntos
Columbidae , Imagem Ecoplanar , Animais , Imagem Ecoplanar/métodos , Vigília , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
9.
Commun Biol ; 6(1): 1119, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923920

RESUMO

Working memory is the cognitive capability to maintain and process information over short periods. Behavioral and computational studies have shown that visual information is associated with working memory performance. However, the underlying neural correlates remain unknown. To identify how visual information affects working memory performance, we conducted behavioral experiments in pigeons (Columba livia) and single unit recordings in the avian prefrontal analog, the nidopallium caudolaterale (NCL). Complex pictures featuring luminance, spatial and color information, were associated with higher working memory performance compared to uniform gray pictures in conjunction with distinct neural coding patterns. For complex pictures, we found a multiplexed neuronal code displaying visual and value-related features that switched to a representation of the upcoming choice during a delay period. When processing gray stimuli, NCL neurons did not multiplex and exclusively represented the choice already during stimulus presentation and throughout the delay period. The prolonged representation possibly resulted in a decay of the memory trace ultimately leading to a decrease in performance. In conclusion, we found that high stimulus complexity is associated with neuronal multiplexing of the working memory representation possibly allowing a facilitated read-out of the neural code resulting in enhancement of working memory performance.


Assuntos
Columbidae , Memória de Curto Prazo , Animais , Memória de Curto Prazo/fisiologia , Cognição/fisiologia , Neurônios/fisiologia
10.
PLoS One ; 18(10): e0291416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878556

RESUMO

Touching a mark on the own body when seeing this mark in a mirror is regarded as a correlate of self-awareness and seems confined to great apes and a few further species. However, this paradigm often produces false-negative results and possibly dichotomizes a gradual evolutionary transition of self-recognition. We hypothesized that this ability is more widespread if ecologically tested and developed such a procedure for a most unlikely candidate: chickens (Gallus gallus domesticus). Roosters warn conspecifics when seeing an aerial predator, but not when alone. Exploiting this natural behavior, we tested individual roosters alone, with another male, or with a mirror while a hawk's silhouette flew above them. Roosters mainly emitted alarm calls in the presence of another individual but not when alone or seeing themselves in the mirror. In contrast, our birds failed the classic mirror test. Thus, chickens possibly recognize their reflection as their own, strikingly showing how much cognition is ecologically embedded.


Assuntos
Comportamento Animal , Percepção Visual , Masculino , Animais , Galinhas , Reconhecimento Psicológico , Cognição
11.
Sci Rep ; 13(1): 15348, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714904

RESUMO

The development of handedness and other form of functional asymmetries is not yet understood in its critical determinants. Early life factors (e.g., birth weight, birth order) have been discussed to contribute to individual manifestations of functional asymmetries. However, large-scale data such as the UK Biobank suggest that the variance in handedness that is explained by early life factors is minimal. Additionally, atypical handedness has been linked to clinical outcomes such as neurodevelopmental and psychiatric disorders. Against the background of this triad, the current study investigated associations between different forms of functional asymmetries and (a) early life factors as well as (b) clinical outcomes. Functional asymmetries were determined by means of a deep phenotyping approach which notably extends previous work. In our final sample of N = 598 healthy participants, the different variables were tested for associations by means of linear regression models and group comparisons (i.e., ANOVAs and Chi-squared tests). Confirming previous findings from larger cohorts with shallow phenotyping, we found that birth factors do not explain a substantial amount of variance in functional asymmetries. Likewise, functional asymmetries did not seem to have comprehensive predictive power concerning clinical outcomes in our healthy participants. Future studies may further investigate postulated relations in healthy and clinical samples while acknowledging deep phenotyping of laterality.


Assuntos
Lateralidade Funcional , Transtornos Mentais , Saúde Mental , Humanos , Ordem de Nascimento
12.
Brain Struct Funct ; 228(8): 1963-1976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660322

RESUMO

Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Algoritmos , Cognição
13.
Nat Commun ; 14(1): 3259, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277328

RESUMO

Mammalian sleep has been implicated in maintaining a healthy extracellular environment in the brain. During wakefulness, neuronal activity leads to the accumulation of toxic proteins, which the glymphatic system is thought to clear by flushing cerebral spinal fluid (CSF) through the brain. In mice, this process occurs during non-rapid eye movement (NREM) sleep. In humans, ventricular CSF flow has also been shown to increase during NREM sleep, as visualized using functional magnetic resonance imaging (fMRI). The link between sleep and CSF flow has not been studied in birds before. Using fMRI of naturally sleeping pigeons, we show that REM sleep, a paradoxical state with wake-like brain activity, is accompanied by the activation of brain regions involved in processing visual information, including optic flow during flight. We further demonstrate that ventricular CSF flow increases during NREM sleep, relative to wakefulness, but drops sharply during REM sleep. Consequently, functions linked to brain activation during REM sleep might come at the expense of waste clearance during NREM sleep.


Assuntos
Encéfalo , Sono REM , Humanos , Camundongos , Animais , Sono REM/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Sono/fisiologia , Vigília/fisiologia , Columbidae , Eletroencefalografia , Mamíferos
14.
R Soc Open Sci ; 10(5): 221239, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37266038

RESUMO

Most studies on emotion processing induce emotions through images or films. However, this method lacks ecological validity, limiting generalization to real-life emotion processing. More realistic paradigms using virtual reality (VR) may be better suited to investigate authentic emotional states and their neuronal correlates. This pre-registered study examines the neuronal underpinnings of naturalistic fear, measured using mobile electroencephalography (EEG). Seventy-five healthy participants walked across a virtual plank which extended from the side of a skyscraper-either 80 storeys up (the negative condition) or at street level (the neutral condition). Subjective ratings showed that the negative condition induced feelings of fear. Following the VR experience, participants passively viewed negative and neutral images from the international affective picture system (IAPS) outside of VR. We compared frontal alpha asymmetry between the plank and IAPS task and across valence of the conditions. Asymmetry indices in the plank task revealed greater right-hemispheric lateralization during the negative VR condition, relative to the neutral VR condition and to IAPS viewing. Within the IAPS task, no significant asymmetries were detected. In summary, our findings indicate that immersive technologies such as VR can advance emotion research by providing more ecologically valid ways to induce emotion.

16.
Neurosci Biobehav Rev ; 152: 105245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230235

RESUMO

The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.


Assuntos
Tonsila do Cerebelo , Emoções , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Medo , Neuroimagem , Aprendizagem , Imageamento por Ressonância Magnética/métodos
17.
Hum Brain Mapp ; 44(8): 3359-3376, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013679

RESUMO

Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples. Whereas PGS explain a considerable amount of variance in intelligence, it is largely unknown how brain structure and function mediate this relationship. Here, we show that individuals with higher PGS for educational attainment and intelligence had higher scores on cognitive tests, larger surface area, and more efficient fiber connectivity derived by graph theory. Fiber network efficiency as well as the surface of brain areas partly located in parieto-frontal regions were found to mediate the relationship between PGS and cognitive performance. These findings are a crucial step forward in decoding the neurogenetic underpinnings of intelligence, as they identify specific regional networks that link polygenic predisposition to intelligence.


Assuntos
Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Encéfalo/diagnóstico por imagem , Inteligência/genética , Herança Multifatorial , Escolaridade
18.
Sci Rep ; 13(1): 4092, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906713

RESUMO

Dogs are one of the key animal species in investigating the biological mechanisms of behavioral laterality. Cerebral asymmetries are assumed to be influenced by stress, but this subject has not yet been studied in dogs. This study aims to investigate the effect of stress on laterality in dogs by using two different motor laterality tests: the Kong™ Test and a Food-Reaching Test (FRT). Motor laterality of chronically stressed (n = 28) and emotionally/physically healthy dogs (n = 32) were determined in two different environments, i.e., a home environment and a stressful open field test (OFT) environment. Physiological parameters including salivary cortisol, respiratory rate, and heart rate were measured for each dog, under both conditions. Cortisol results showed that acute stress induction by OFT was successful. A shift towards ambilaterality was detected in dogs after acute stress. Results also showed a significantly lower absolute laterality index in the chronically stressed dogs. Moreover, the direction of the first paw used in FRT was a good predictor of the general paw preference of an animal. Overall, these results provide evidence that both acute and chronic stress exposure can change behavioral asymmetries in dogs.


Assuntos
Lateralidade Funcional , Estresse Fisiológico , Animais , Feminino , Masculino , Comportamento Animal , Frequência Cardíaca , Cães
19.
J Comp Neurol ; 531(7): 790-813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808394

RESUMO

The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.


Assuntos
Columbidae , Neurônios , Animais , Columbidae/metabolismo , Neurônios/metabolismo , Mamíferos , Calbindinas/metabolismo , Hipocampo/metabolismo
20.
Cereb Cortex ; 33(11): 6723-6741, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36682883

RESUMO

Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon density.


Assuntos
Substância Branca , Adulto , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Inteligência , Anisotropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA